
Implant Global and Local Hierarchy Information to
Sequence based Code Representation Models

Kechi Zhang†

Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

zhangkechi@pku.edu.cn

Zhuo Li†

Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

lizhmq@pku.edu.cn

Zhi Jin*
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

zhijin@pku.edu.cn

Ge Li*
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

lige@pku.edu.cn

Abstract—Source code representation with deep learning tech-
niques is an important research field. There have been many
studies that learn sequential or structural information for code
representation. But sequence-based models and non-sequence-
models both have their limitations. Researchers attempt to incor-
porate structural information to sequence-based models, but they
only mine part of token-level hierarchical structure information.
In this paper, we analyze how the complete hierarchical structure
influences the tokens in code sequences and abstract this influence
as a property of code tokens called hierarchical embedding. The
hierarchical embedding is further divided into statement-level
global hierarchy and token-level local hierarchy. Furthermore, we
propose the Hierarchy Transformer (HiT), a simple but effective
sequence model to incorporate the complete hierarchical embed-
dings of source code into a Transformer model. We demonstrate
the effectiveness of hierarchical embedding on learning code
structure with an experiment on variable scope detection task.
Further evaluation shows that HiT outperforms SOTA baseline
models and show stable training efficiency on three source code-
related tasks involving classification and generation tasks across
8 different datasets.

Index Terms—Code Representation, Code Summarization,
Code Classification, Clone Detection

I. INTRODUCTION

Code representation is a hot research topic in software

engineering (SE) and machine learning (ML) fields. Machine

learning for code representation learning aims to convert pro-

grams of different formats (sequential formats such as token

sequences, structural formats such as abstract syntax trees,

dependency graphs, etc.) into vectorized semantic embeddings.

These representation vectors can be applied on many down-

stream tasks, such as code classification [31], type inference

[3], code summarization [6, 9, 19, 21], etc.

Most existing code representation methods can be divided

into two categories: Sequence-based models [2, 12] are skilled

† The two authors share equal contribution.
* Corresponding authors

for_statement

if_statement

function_definition

def countOccurrences(source, value):
count = 0
for i in range(len(source)):

source_i = source[i]
if source_i == value:

count += 1
return count

(a) Hierarchical location affects the operational semantics of a statement

���������	
�����
�	� �����	
�����
�	�

��	����	
����	����	

��
�����
�	�

���
�����
�	�

���������������

�������������
��
������	 ��
�����

if source_i == value: count += 1... ...token sequence:

���	������ ���	������ ���	������

(b) Hierarchy information within a statement affects the semantics of a token.

Fig. 1. An illustrative example of the hierarchy information in source code.
The hierarchy of a token refers to the hierarchical location of its statement
(global hierarchy) and the local component of the token in the statement (local
hierarchy). The token source_i and value are both identifier in
if_comparison marked in green in (b) and they are more closely related.

at processing sequence order information with long-term de-

pendency. But they are sub-optimal for capturing structural in-

formation [31, 47]. Non-sequence-based models, such as tree-

based (ASTNN [47], TBCNN [31]) or graph-based models

(GGNN [25]), focus on encoding structural information, but

sacrifice the advantages of sequence models or suffer from

narrow receptive fields. These methods predominantly leverage

either sequential or structural information of source code, and

ignore the combination of the two modal information.

Recently, some studies jointly learn both sequential and

157

2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC)

2643-7171/23/$31.00 ©2023 IEEE
DOI 10.1109/ICPC58990.2023.00030

20
23

 IE
EE

/A
C

M
 3

1s
t I

nt
er

na
tio

na
l C

on
fe

re
nc

e
on

 P
ro

gr
am

 C
om

pr
eh

en
si

on
 (I

C
PC

) |
 9

79
-8

-3
50

3-
37

50
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
PC

58
99

0.
20

23
.0

00
30

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

structural information for code representation in sequence-

based models. Hellendoorn et al. [17] proposed GREAT, a

Transformer model using the relative positional encoding to

bias the attention using edges of the data flow graph and

control flow graph. Zügner et al. [49] proposed CodeTrans-
former, which combines distances computed on the AST in the

self-attention operation. However, these methods use limited

information of code structure, such as node distances on the

program tree or graph. They focus on modeling structure

as a relation between tokens with attention mechanism and

overlook the full impact of hierarchical structure information,

which weakens the structural information of source code.

In this work, we take a step to explore how the com-

plete hierarchical structure influence the tokens in source

code sequence and abstract this influence as a property of

code tokens called hierarchical embedding. We further divide

this influence into two aspects: � hierarchical embedding

of statements (named as global hierarchy). The hierarchical

embedding will affect the operational semantics of a statement.

For example, in Figure 1, the statement count += 1 is

written in the for-block and possibly to be executed more

than once, while the statement count = 0 will be executed

only once in each function call to countOccurrences. �
hierarchical embedding of tokens within a statement (named

as local hierarchy). Tokens are in different components in

a statement, which will affect the semantics of each token.

e.g., as shown in Figure 1(b), the three identifiers, source i,
value, and count, in the if-statement, are references to

variables in the function. However, the first two identifiers

within if-comparison component (marked in green color

in the figure) have more similar semantics than count because

they appear in the same comparison expression.

To validate our intuition of modeling the global and local hi-

erarchies with code sequences, we propose to unify hierarchi-

cal structure into the code sequence in a concise Transformer

format. We name the network Hierarchy Transformer (HiT),

a simple but effective model that can achieve a preferable

balance between efficiency and effectiveness. The HiT model

consists of two key components: a Transformer-based hier-

archy encoder that learns the representation of the hierarchy

information, and a Transformer-based sequence encoder that

fuses the hierarchy information and token sequence informa-

tion. Specifically, the hierarchy information is represented by

the root-to-leaf paths in the code syntax tree and encoded by

the Transformer-based hierarchy encoder.

We conduct an empirical study to investigate the impact

of the global and local hierarchy. The experiment proves

the effectiveness of the two different types of hierarchical

embeddings. It shows that with the cost of a small number of

additional parameters, our approach significantly enhances the

performance of sequence-based code representation models

and achieves stable training efficiency. We also design a

variable scope detection task to show our model can well

learn the scope information in global hierarchy and represent

the relationship between sequence and structure information

of source code. We further evaluate our approach on three

tasks: code classification, clone detection, and method name

prediction, with 8 different datasets from different domains.

These tasks include classification and generation. The results

show that our approach outperforms existing code representa-

tion models and other state-of-the-art models. It indicates the

benefits of our approach for aligning the complete hierarchical

embedding with code tokens for source code understanding.

The contributions of this paper are summarized as follows.

• We analyze how the complete hierarchical structure influ-

ences tokens in code sequences and abstract this influence

as a property of code tokens called hierarchical embedding.

• We propose HiT, a simple but effective model to incorpo-

rate the hierarchical embedding into Transformer. Through

experimental analysis, we demonstrate our approach can

well represent the scope information in global hierarchy.

Our empirical study shows that global and local hierarchical

information are essential for code representation models,

while existing jointly learning models ignore the former.

• We evaluate our approach on 3 source code-related tasks

with 8 different datasets, involving classification tasks and

generation tasks on source code. Our experimental results

prove that aligning the complete hierarchical embedding

with code tokens is effective for learning representations

for programs with stable training efficiency. 1

II. RELATED WORK

A. Sequence-based Code Representation

Code representation learning is a hot research topic in

software engineering and machine learning fields. Among

various representation approaches, sequence models are the

most mainstream code representation models, based on the

concept of “naturalness“ [2, 12, 18, 43], which argues that

programming languages are usually simple, repetitive, and

can be understood through the same approaches used in

natural language processing. Sequence models are efficient and

effective in processing the code token sequence, and have been

applied across many SE tasks [1, 5, 13, 21, 27, 28, 33, 39]. Re-

cently, sequence-based pre-trained models [14, 26, 29], such as

CodeBERT, have achieved success in SE tasks, demonstrating

the power of sequence-based models. Due to their large-scale

parameters and massive pre-training data, We did not consider

pre-trained models as baseline models in this work.

There are also researchers trying to encode structural infor-

mation with sequence models [6, 9, 19, 24, 34]. Some leverage

the program AST to model the structure in source code and

represent source code as a set of leaf-to-leaf paths over ASTs

[6]. Others use the flattened (AST) node sequence as input to

model the structure in the source code. However, leaf-to-leaf

paths would scrap the code sequence information. Using the

flattened node sequences to encode tree structures makes the

entire sequence representation significantly longer, and code

tokens are interspersed with other non-terminal tree nodes.

These approaches weaken the “naturalness” of the source

1Code and data are open-sourced on Github: https://github.com/zkcpku/
HiT-hierarchy-transformer

158

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

code context. We declare that combining the “naturalness”

and hierarchical structure information in the code sequence

is essential. In this paper, we follow the research line of

incorporating hierarchical structure into the code sequence

representation model.

B. Non-Sequence-based Code Representation

Programs contain extensive structure information. There-

fore, recent studies explore using tree-based [7, 11, 31, 41, 47]

and graph-based [4, 15, 40, 42, 45, 48] models for code

representation models. Although tree-based and graph-based

models can directly capture structural information of source

code, they are generally less efficient than sequence models.

They require complex data preprocessing designed for partic-

ular languages. In the input tree or graph, the number of nodes

in the receptive field of each node grows exponentially, which

leads to models not being able to understand the complete

sequence information well [8]. In our experiments, we include

graph-based and tree-based models as our baselines.

Recently, some studies have also integrated structure in-

formation of source code into sequence-based models [16,

17, 22, 23, 49]. Some of these studies are designed for

code representation tasks: Hellendoorn et al. [17] proposed

Graph Relation Embedding Attention Transformer (GREAT),

which biases Transformer with relational information from

graph edge types, and achieves good performances on variable

misuse task. Zügner et al. [49] proposed CodeTransformer,

which computes pairwise distances on AST and integrates

multiple relations into the attention module. However, these

methods jointly learn source code’s sequential and structural

information with a simplified token-level hierarchical struc-

ture, such as node distances on the program tree or graph. They

overlook the full impact of hierarchical structure information

on the code sequence, and we will give a deep analysis of the

hierarchy information contained in the code structure.

III. ANALYSIS OF HIERARCHY INFORMATION

In this section, we analyze how the complete hierarchy

information influences the tokens in the source code se-

quence and motivating examples. Generally, for programs,

we tokenize the source code to get the token sequences

and encode them with a sequence model with hierarchical

embeddings. Hierarchical embedding can be regarded as a

semantic property of each token in the sequence. We further

divide the semantics in the hierarchical embedding into two

levels: hierarchical embedding of tokens within a statement

(named as local hierarchy) and hierarchical embedding of

statements (named as global hierarchy). We analyze the

token-level and statement-level semantics introduced by each

part of the hierarchical embedding.

A. Understanding Token-level Semantics with Local Hierarchy

The semantics of the token is related to the local hierarchy.

Simply encoding a token with only the token embedding

will lose local structural information. Specifically, the same

tokens may have different semantics, but given the same token

for(int i� = 0; i < N; i++){
scanf("%d",&A[i])

}

for(int j� = 0; j < M; j++){
scanf("%d",&B[i])

}

void quickSort(int array[],int l,int r){
if(l<r){

int i� =partition(array,l,r);
quickSort(array,l,i-1);
quickSort(array,i+1,r);

}
}

token sequence:

int i = ... j = ...

int i! = ...

��������

����	
��
�
����

�������

	
��
�
����

��������

����	
��
�
����

token sequence:

Fig. 2. An illustrative example of thse tokens in different contexts. The same
token may have different semantics (i 1© and i 2© in two programs), and
different tokens with similar context may have similar semantics (i 1© and
j 1© in the first program)

py3
import random�

rand = random!.random�()

token sequence:

random ... random! . random� ()

"������	���
���
		"���	���

����"�����	
���

Fig. 3. An illustrative example of the repeated tokens in different statements.
The repeated token random represents different semantics.

embedding. On the contrary, different tokens that appear in

similar contexts may have similar semantics.

For example, in Figure 2, the variable i in the first program

is used as a loop variable. In contrast, the variable i in the

quick sort program represents the partition index. Although

both programs define and use the variable i, they express

different meanings with it. Furthermore, in the first program

in Figure 2, there is another variable j used as a loop

variable. We can discover that the variable i and j in the

first program have similar semantics, which is different from

the meaning of variable i in the second program. However,

the embedding layer gives the same representation to i and

a different representation to j. Another example is shown in

Figure 3. In these two lines of python code, the token appears

three times, indicating a module import, a module reference,

and a module attribute, respectively. It is hard to exploit this

implicit semantic difference for a traditional sequence model.

Thus we believe that it is essential to model the structure of

the local hierarchy to understand the meaning of tokens.

We revisit existing joint learning models for code represen-

tation [17, 49] and find that most of them focus on encoding

relations between tokens in code sequences, such as node dis-

tances on the program tree/graph. They are skilled at encoding

the token-level semantics and yield good performance. But our

further analysis shows that hierarchical structural information

contains more than token-level information.

B. Understanding Statement-level Semantics with Global Hi-
erarchy

To illustrate the statement-level semantics contained in the

global hierarchy, we show two classical examples: � The

semantics of statements is related to the global hierarchy.

159

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

row = len(M)�

for i in range(row):
column = len(M[i])!

for j in range(column):
sum += M[i][j]

!

�

token sequence:

... print(sum)
print(sum)

���
... M ... M[i] ... M[i][j] ...

��������

��� ��������

���

��������

?
? ?

?
?
?

Fig. 4. An illustrative example of the implicit block structure ignored in token
sequences. We can place the statement print(sum) in three places, where
the token sequences are almost the same, but the semantics are different.

Most programming languages permit the creation of blocks

and nested blocks. The block structure is fundamental for

creating control flow and defining the scopes of variables.

Thus modeling block structure is helpful for understanding

control flow and variable scope. The control flow will influ-

ence the effects of a statement. Figure 4 shows an example

about semantics of the statement in the block structure. The

statement print(sum) can be placed at any of the three

marked positions: in the inner for loop, in the outer for
loop, and outside of the outer for loop. A small change

in the statement’s position will affect the program’s output.

Locating the statement in the block structure will help the

model better determine the function of the source code. � We

also observe that the functionality of the program is closely

related to the global hierarchy. Source code with similar

functionalities tends to have similar global hierarchies. This

unique global hierarchy can help the model distinguish the

functionality and semantics of the program. To better confirm

our observation, we conducted a simple statistical experiment

on the code classification task on Python800 dataset from

the CodeNet project [35]. Figure 5 gives an example solution

with problem id p02412 in CodeNet. This program counts the

number of triplets of numbers satisfying two requirements:

each number is less than n and they sum up to k. There is

a if statement in four levels of nesting while/for loop. We

traverse the dataset and find that there are 121 programs that

have a while-for-for-for-if hierarchical position. We

surprisingly find that 111 of the 121 (about 91.7%) programs

are written to solve problem p02412. And there are 300

programs in total for solving this problem, which means about

37% of the programs solving p02412 use the special structure

mentioned above. Through these statistics, we claim that the

global hierarchy of source code is strongly related to the

functionality and semantics of the program.

Through our analysis, we show that global and local hierar-

chical structures are essential for code representation models,

while existing joint learning models ignore the former. We will

conduct an empirical study to prove our point experimentally

in Section VI-A.

IV. PROPOSED MODEL

A. Overview

In this work, we propose a source code representation

model, HiT, to encode the code sequence and the hierarchy

information simultaneously. The entire pipeline of our ap-

proach is shown in Figure 6. To get the hierarchical position

while True:
n, x = map(int, input().split())
if (n == x == 0):

break
count = 0
for a in range(1, x // 3):

for b in range(a + 1, x // 2):
for c in range(b + 1, n + 1):

Sum = a + b + c
if (Sum == x):

count += 1

global
hierarchy

�������	
	

��
��	
	

��
��	
	

��
��	
	

����	
	

> 91.7%
for p02412

Fig. 5. An illustrative solution example from problem id p02412 in CodeNet
Python800. There are 121 programs that have such a hierarchical position in
the dataset. 111 of the 121 programs (more than 91.7%) are written for the
problem p02412.

of the source code, we first parse the source code to the

concrete syntax tree and extract paths from it. Each path is

fed into a Transformer-based hierarchy encoder to embed the

hierarchy information to hidden vectors. We then concatenate

the hierarchy vector representation with the token embedding

and use another Transformer-based sequence encoder to learn

the final code representation. Finally, the representation vector

can be fed into a linear classifier or a decoder for various

downstream tasks.

B. Hierarchy Extraction

Hierarchical embeddings in source code are extracted from

the concrete syntax tree. Parsing trees of source code contains

rich structural information of source code. Concrete syntax

tree (CST) and abstract syntax tree (AST) are parsing trees.

The concrete syntax tree reflects the exact syntax of the source

code, where each leaf node corresponds to a source code token.

In theory, a CST can be converted to an AST equivalently.

However, ASTs do not represent every detail appearing in

the real syntax. For instance, the braces, semicolons, and

parentheses are discarded in ASTs, making it hard to align

the structural information with these code tokens. To extract

the hierarchical embedding of each source code token, we use

CSTs in this work.

As stated in Section III, we expect to model the hierarchical

embedding of source code to better understand the semantics

of tokens and statements. To get the hierarchical embedding,

we extract all root-to-leaf paths from the CST. Considering

that each leaf node in the CST corresponds to a source

code token, the extracted root-to-leaf paths can be aligned

to each token. The set of paths expresses the hierarchy of

the program. Intuitively, we can further divide a path into

two parts: the root-to-statement path and the statement-to-leaf

path. The root-to-statement path represents the surrounding

block structure of a statement. We name the structure global
hierarchy which reflects the position of a statement in the

program. The statement-to-leaf path represents the structure

of the local context of a source code token. We name the

structure local hierarchy which reflects the position of a token

within the statement. Step 1 in Figure 6 gives an illustration of

different parts of the tree path. The global hierarchy and local
hierarchy are included in the root-to-leaf path. In our main

experiments, we use the root-to-leaf path in HiT model. To

study the contribution of global hierarchy and local hierarchy,

160

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

Sequence Encoder

Hierarchy
Encoder

�

token1

...

hierarchy1

�

token2

...

hierarchy2

���������������������������	
����� ��������������������
��	�
��

copygenerate copygenerate

pointer network

word

MLPaverage pooling

sequence

��������	�
�����
��	� ���

Classification task

Generation task

t

... ...

���������	
��������

�����
�
�
��

������
�
�
��

��������	
���

���
�
�	

local
hierarchy

global
hierarchy

if i == value:... ...i

Fig. 6. The pipeline of our approach

respectively, we perform an empirical study where only one

part of the path is used in RQ1 in Section VI-A.

C. Hierarchy Transformer

We propose a new sequence model, Hierarchy Transformer

(HiT), which uses a combination of token sequences and

hierarchy information for code representation. Given a token

sequence with hierarchical path s = [(n1, t1), · · · , (nl, tl)],
where l is the length of the token sequence, (t1, · · · , tl) indi-

cate token sequence of the source code, and n = (n1, · · · , nl′)
is a tree path (sequence of tree nodes). To process both

token sequences and hierarchy information, we use a small

Transformer to encode the paths nk. We then concatenate the

representation of hierarchy information and token embedding

and feed them into a larger Transformer model. We refer to the

two transformers as Hierarchy Encoder and Sequence Encoder.

(i) Hierarchy Encoder. The hierarchy encoder is designed to

process the hierarchy into a vector representation. For each

tree path, we first embed the types of tree nodes and feed

them into the Transformer model. Then we perform a mean

pooling to get the representation of the whole path.

e1, e2, · · · , el′ = Embed(n1, n2, · · · , nl′) (1)

h1, h2, · · · , hl′ = Transformerhie(e1, e2, · · · , el′) (2)

p = MeanPooling(h1, h2, · · · , hl′) (3)

(ii) Sequence Encoder. The sequence encoder is designed to

combine the hierarchy representation with tokens and process

the resulting new sequence into the final code representa-

tion vector. We first concatenate the hierarchy representations

pi with the token embeddings ei. Then we use another

Transformer as the sequence encoder to get the final code

representation.

E1, E2, · · · , El = Embed(t1, t2, · · · , tl) (4)

X = (p1||E1, p2||E2, · · · , pl||El) (5)

H1, H2, · · · , Hl = Transformerseq(X) (6)

D. Downstream Modules

The hierarchy encoder transforms the code sequence with

hierarchy information into a vectorized representation. Most

program processing tasks can be categorized into classification

tasks and generation tasks. To apply our HiT on downstream

tasks, we use different downstream modules according to the

type of tasks.

(i) Classification. For classification tasks, models are required

to classify programs based on the functionalities or other

properties they implement. We first apply average pooling over

the HiT output and get the global representation vector v. After

getting v, we apply a 2-layer MLP as the classifier to get the

classification result. The probability of the output label is then

calculated with a softmax layer:

v = MeanPooling(H1, H2, · · · , Hl)

o = g(W2 · f(W1 · v + b1) + b2)

Pi =
exp(oi)∑
i exp(oi)

We use the standard cross entropy loss to train our model:

L = −
|Y|∑

i=1

y==i logPi, (7)

where is the indicator function.

(ii) Generation. For generation tasks, models are required to

generate the target sequence conditioned on the encoder out-

put, such as method name prediction and code summarization.

We pass all encoder output as a sequence to a transformer

decoder. To generate out-of-vocabulary (OOV) tokens, we

adopt a pointer network [38] based on the Transformer decoder

model. The pointer model first attends to the encoder’s output

at each timestep and gets a hidden vector h∗
t .

eti = WT
3 tanh(W1Hi +W2st + b)

at = softmax(et)

h∗
t =

∑

i

atiHi,

where W1,W2,W3, b are learnable parameters, st represents

the output of the transformer decoder at timestep t. After

161

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

obtaining the context vector, the model produces the vocabu-

lary distribution and the copy probability pcopy ∈ [0, 1] with

Hi and st at this timestep. The pc denotes the probability

of copying tokens from the input sequence. On the contrary,

pgen = 1− pcopy indicates the probability of generate a token

from the vocabulary. The probability of predicting the token

w is calculated as follows:

Pv = softmax(W4h
∗
t + b1)

Pcopy = sigmoid(W5h
∗
t + b2)

P (w) = pgenPv(w) + pcopy
∑

i:wi=w

ati.

The copying mechanism enables the model to enhance its

predictions by pointing at positions in the input sequence.

During training, the loss for the output sequence is calculated

as the average loss over the negative log likelihood of each

target token wt:

L =
1

T

T∑

t=0

− log
∑

w̃t∈vocab

�w̃t==wt
P (w̃t) (8)

V. EXPERIMENTAL SETUP

With the extracted hierarchy information in the code se-

quence, we adopt HiT and perform extensive evaluation upon

three code understanding tasks involving classification and

generation tasks across 8 different datasets. We aim to in-

vestigate five research questions:

RQ1. Global Hierarchy & Local Hierarchy. What is the

impact of the global and local hierarchy on code representation

models? To what extent do the different types of hierarchy

improve the performance of HiT?

RQ2. Scope Information In Global Hierarchy. Can HiT

learn the scope information in global hierarchy? Is it important

for the code representation model to focus on the global

hierarchy?

RQ3. HiT vs. Transformer on Performance and Efficiency.
Is the hierarchy information in HiT helpful for sequence

models? What is the parameter cost and training efficiency

of HiT compared with the vanilla Transformer?

RQ4. Performance on Classification Tasks. How does HiT

perform compared with the SOTA models on the code classi-

fication and clone detection tasks?

RQ5. Performance on Generation Tasks. How does HiT

perform on generation tasks? Can HiT produce better results

than SOTA models on the method name prediction task?

A. Subject tasks and Datasets

Our experiments are conducted upon two representative

source code classification tasks (i.e., code classification and

clone detection) and one generation task (i.e., method name

prediction). We evaluate 8 widely used datasets in total, and

the compared baseline models are among the classical models

or the SOTA models. The statistics of these datasets are

summarized in Tabel I.

1) Code Classification: In the code classification task, the

model needs to predict the category of the given code snippet

based on the semantics. In particular, for selected datasets,

solutions under each question correspond to a category. We

consider using Project CodeNet [35] and POJ-104 [31]. Project

CodeNet contains over 14M code samples from two open

judge platforms AIZU and AtCoder. It provides four large and

challenging datasets for the code classification task, including

Java250, Python800, C++1000 and C++1400. POJ-104 is

collected from another pedagogical online judge system with

104 programming problems. It has been used by many previ-

ous studies in code classification and clone detection tasks.

2) Clone Detection: In the clone detection task, the model

needs to detect whether two pieces of code implement the

same functionality. We adopt the POJ-Clone and follow the

previous task settings [29]. It aims to retrieve other programs

that solve the same problem given a program. To test the

generalization ability of different approaches, the training/val-

idation/test is split based on the problems.

3) Method Name Prediction: In method name prediction,

a method with its name masked is fed into the model, and the

model needs to predict the original method name based on the

given method body. We experiment on two datasets introduced

in the CodeSearchNet (CSN) Challenge [20, 49]: CSN-Python
and CSN-Ruby. The datasets are obtained by scraping from

public repositories across the most popular projects on GitHub.

We follow the work of Husain et al. [20] which splits the data

based on the source repositories.

B. Evaluation Metrics

For code classification task, we adopt the measure in [35]

and use the accuracy for this multiclass classification task.

For clone detection task, we follow Lu et al. [29] and use

the MAP@R [32] score for evalutation. MAP@R is defined

as the mean of the average precision scores, each of which

is evaluated to retrieve the most similar R samples given a

query. For a code (query), R is the number of other codes in

the same class and R = 499 in the POJ-Clone dataset.

For method name prediction task, we adopted metrics in

previous studies[6, 9, 49], which measure precision, recall,
and f1 on subtokens of generated method names.

C. Implementation Details

Hierarchy Extraction Parser. We extract the hierarchy infor-

mation from the concrete syntax tree with Tree-sitter, a parser

generator tool. Based on this tool, our approach is general and

dependency-free enough to parse any programming language

and extract the hierarchy information. In our experiments,

we have selected datasets in C++, Java, Python, Ruby for

evaluation, showing the generality and effectiveness.

Model Implementation. Our model is implemented based

on the Pytorch framework. We conduct all experiments on

a Tesla V100S GPU with 32GB of memory. Each experiment

is run five times with random seeds and then averaged for final

results. We set the embedding size and the hidden size to 256,

and employ 8 heads in each transformer layer. For the code

162

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I
STATISTICS OF DATASETS

Code Classification Clone Detection Method Name Prediction

Java250 Python800 C++1000 C++1400 POJ-104
POJ-Clone

CSN-Ruby CSN-Python
Examples Problems

S
iz

e Train 45,000 144,000 300,000 252,000 36,400 32,000 64 48,791 412,178
Valid 15,000 48,000 100,000 84,000 5,200 8,000 16 2,209 23,107
Test 15,000 48,000 100,000 84,000 10,400 12,000 24 2,279 22,176

A
v
g
.

L
en

g
th Token Seq 228.02 125.18 270.96 334.89 246.96 246.96 79.18 131.59

Complete Hierarchy 9.26 7.66 7.14 7.62 9.15 9.15 6.89 9.12
Global Hierarchy 7.15 4.05 4.75 5.06 6.22 6.22 5.62 5.69
Local Hierarchy 2.11 3.61 2.39 2.56 2.92 2.92 1.26 3.42
Target Seq - - - - - - 2.23 2.25

TABLE II
PERFORMANCE OF HIT VS. TRANSFORMER, AND HIT WITH DIFFERENT

TYPES OF HIERARCHY FOR ALL THREE TASKS.

(a) On Code Classification and Clone Detection Tasks

Code Classification (Accuracy) POJ-Clone
(MAP@R)Para Java250 Py800 C++1000 C++1400 POJ

HiT 4.55M 94.81 95.97 95.05 93.27 97.08 80.46
Trans 4.50M 93.49 93.99 89.93 67.87 88.13 67.15

global 4.55M 93.79 94.84 91.35 83.90 94.56 74.85
local 4.55M 93.95 95.42 92.64 90.45 96.37 75.88

(b) On Method Name Prediciton Task

CSN-Ruby CSN-Python
Para P R F1 P R F1

HiT 36.75M 30.70 27.58 29.06 37.25 33.75 35.41
Trans 34.89M 24.26 19.66 21.71 32.71 27.63 29.96

global 36.75M 24.90 22.89 23.87 34.26 29.29 31.58
local 36.75M 28.69 25.58 27.05 35.34 30.50 32.74

classification task and the clone detection task, the hierarchy

encoder consists of 2 layers, and the sequence encoder consists

of 6 layers. For the method name prediction task, the number

of sequence encoder layers and decoder layers are set to 4

and 2. We use AdamW with a learning rate of 1e−4 and

weight decay. We use spaces as the separator for tokenizer,

and set the vocabulary size between 5000-8000 according to

different tasks. For all baseline models, we retrain on the given

datasets to get more reliable results. We try to keep the hyper-

parameters the same as baseline models for a fair comparison.

VI. EXPERIMENTAL RESULTS

A. RQ1: Global vs. Local Hierarchy

To investigate the impact of different types of hierarchy

information, we conduct an empirical study and feed HiT

with the global hierarchy and local hierarchy, respectively.

We perform the analysis on all datasets of three tasks. The

experimental results are listed in Table II. The row global and

local refers to the two types of hierarchy.

On the basic program understanding task of the code classi-

fication task, we observe that the local hierarchy outperforms

the global hierarchy by 0.16%, 0.58%, 1.29%, 6.55%, and

1.81% in the five datasets. It shows that the local hierarchy

is comparable and sometimes more effective than the global

hierarchy for code classification. The MAP@R of the local

hierarchy on the clone detection task is improved by 1.03

compared with the global hierarchy. For the method name

prediction task, the local hierarchy outperforms the global

hierarchy by 3.18 and 1.16 in F1-score on two datasets.
Experiments show that both the global and local hierarchy

outperform the original sequence model, indicating that they

are helpful for the sequence model to distinguish the semantics

and functionalities of the programs. The global hierarchy

provides the surrounding block structure of a statement, which

contains the nested structure and the global position of a

statement in the code. And the local hierarchy provides the

structure of the local context of a source code, which contains

the type information and the local position of a token in the

statement. Experimental results show that the type information

and the local structure play significant roles in the code

representation, which also confirms that the existing models

can achieve good results based on token-level local hierarchy.
Furthermore, We also notice that the performance of using

global hierarchy and local hierarchy separately is worse than

using the complete hierarchy. Therefore, we can show that
both global and local hierarchical embeddings are essential
for code representation. We use the complete hierarchy to

feed HiT in our follow-up experiments.

B. RQ2: Scope Information in Global Hierarchy
To investigate the scope information in global hierarchy

learned by HiT, we design a new task called Variable Scope
Detection. Given two variables in a program, the model

needs to detect whether these two variables are in a scope. 2

Formally, given the representation vector of the two variables

hA, hB , the probability pscopeA,B
of variable A and B in the

same scope is calculated by dot product following a sigmoid

function:

pscope(A,B)
= sigmoid(hAWshB) (9)

where Ws is a learnable parameter. We provide examples of

the task in Table III. Considering that the variable scope is a

mapping of the hierarchical structure information on variable

tokens, this task requires the model to learn the accurate global

hierarchical block structure for sequence tokens.
In our experiment, we adopt Python800 and C++1400

datasets in Project CodeNet. We sample variable pairs and

2The scope of a variable is a block structure in the entire program where
the variable is declared, used, and can be modified.

163

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

TABLE III
EXAMPLES FOR VARIABLE SCOPE

DETECTION IN C++ DATASET

Example Program Variable Pair

if (i % 2 == 0)
C -= B;

else
A -= D;

(C, B)
Same scope
(C, A)
Different scope

TABLE IV
PERFORMANCE OF MODELS ON

VARIABLE SCOPE DETECTION

(ACCURACY)

Model Python C++

HiT 80.27 76.12

Transformer 77.18 63.77
GGNN 79.81 68.94
GREAT 79.39 69.38

extract about 7 million pairs for Python and 65 million pairs for

C++ with balanced labels. The division of the dataset follows

the settings suggested by CodeNet in the classification task.

We extract the variable representation vector from the encoder

output of trained models in classification task. For sequence

models, we extract the corresponding token representation. For

graph-based models, we extract from node representations. We

compare with the vanilla Transformer, GGNN and GREAT.

The selection details of baselines are discussed in Section

VII-A. Experiment results are shown in Table IV.

Results show that with the hierarchical embedding, our

model can understand the hierarchical block structure better

and outperforms the vanilla Transformer and GGNN on the

variable scope detection task. We can also observe that HiT

performs even better on the C++ dataset by at least 6.7%. Our

in-depth investigation on the dataset reveals that the programs

in the C++ dataset are much longer and the relationship

between variables is more complex compared with the Python

dataset. The program graphs in the C++ dataset for tree-based

and graph-based models are large. The number of nodes in the

receptive field of each node grows exponentially, which leads

to these models not being able to understand the complete

sequence information well. Our model retains the advantage
of the sequence models to capture long-term semantic
dependency, and shows the importance of learning the
scope information in global hierarchy.

C. RQ3: HiT vs. Transformer on Performance and Efficiency

To answer RQ3, we compare the hierarchy transformer with

the vanilla Transformer. We list the results of our HiT and the

vanilla transformer on all three tasks in Table II. We also show

the parameter cost under different task settings. The column

Para refers to the total number of parameters for different

models. In the following experiments we will continue to use

the same amount of parameters.

For the classification tasks, we find that on C++1400

dataset, adding the hierarchy information would cause the

classification accuracy to improve by more than 25.4%. On

C++1000 dataset, this improvement is more than 5.12%. It

shows that the hierarchy information can significantly improve

the stability and performance of sequence models, especially

for those datasets with complex semantics and long programs.

For the clone detection task, we observe that HiT outperforms

the Transformer by 13% on MAP@R. Considering our exper-

imental setup that training and testing sets are split according

to OJ problems, HiT is more generalizable on the unseen

����

����

����

� �	��

�
�
�
��

�
�
��
�

�����

�������	�

�������	�

��� �����

(a) Python800

����

����

����

� � �� ��

��
���
��
�	

��
�

��� �����

����

(b) C++1400

Fig. 7. Training efficiency of HiT and Transformer on Python800 and
C++1400 datasets. In 7(a) We plot a line to show that HiT can achieve
comparable results to Transformer with less training cost. In 7(b) it indicates
that our model can achieve more stable training process on difficult datasets.

TABLE V
PERFORMANCE OF MODELS ON CODE CLASSIFICATION TASK

Model Java250 Python800 C++1000 C++1400 POJ-104

RGCN 91.93 91.60 92.73 92.34 95.57
GGNN 93.64 92.23 91.72 92.48 94.80

TBCNN 92.84 93.17 94.77 88.29 96.20
ASTNN 92.86 93.80 94.61 90.17 96.79
TreeCaps 93.07 94.35 94.92 90.16 96.81

SBT 65.64 71.69 65.05 56.33 89.58
X-SBT 83.31 89.10 66.79 67.00 94.58

Transformer 93.49 93.99 89.93 67.87 88.13
GREAT 93.36 93.27 92.76 92.50 90.33

HiT 94.81 95.97 95.05 93.27 97.08

CodeBERT† 96.47 97.41 86.13 83.05 98.40
† CodeBERT is a pre-trained model with significantly more parameters

than our model, with a parameter count nearly 27 times that of HiT.

problems than the original sequence model. For the method

name prediction task, upon the two datasets CSN-Ruby and

CSN-Python, the F1-score improves by about 7.35% and

5.45%. This improvement is significant in both classification

and generation tasks over 8 different datasets. Hence, the

hierarchy information is essential for sequence models to

generate accurate code representations for various tasks. Our

model significantly enhances the original sequence model on

different tasks, at a minimal extra parameter cost of 1%-5%.

To evaluate the training efficiency, We recorded the training

process of the two models in Figure 7. We selected two

representative datasets: Python800 and C++1400. The training

process of our model is faster and more stable. On Python800

dataset, HiT can achieve comparable results to Transformer

with less training epochs and time. For difficult datasets such

as C++1400, HiT shows more stable learning ability, making

it perform more efficiently on such datasets.

D. RQ4: On Classification Task

1) RQ4.1: Code Classification: We compare with the

following state-of-the-art code representation models:

(1) Graph Neural Networks. We include RGCN ([36]) and

GGNN ([25]) as baseline models.

(2) Tree-structured Neural Networks. We include TBCNN

[31], ASTNN [47] and TreeCaps [11] as baseline models.

164

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

1.98 3.12

54.19 55.12

23.42

74.85 75.61
82.45

67.15

80.46 82.67

0

20

40

60

80

cod
e2v
ec

cod
e2s
eq
NC
C
Aro
ma
TBC

CD

MIS
IM-
BoF

MIS
IM-
RN
N

MIS
IM-
GN
N

Tra
nsfo

rme
r
HiT
Cod

eBE
RT

Fig. 8. Performance of models on POJ-Clone.3

(3) Traversal Sequences of ASTs. We compare our model with

SBT [19] and XSBT [34]. SBT[19] represents the tree nodes

into a token sequence with brackets to denote hierarchies. X-

SBT [34] simplifies SBT by using an XML-like form.

(4) Transformer-based Models. In addition to the vanilla

transformer, we also compare our model with GREAT[17]. For

comparison, we also include results for CodeBERT, a widely

used pre-trained model that has a much larger number of

parameters than HiT. Specifically, CodeBERT has 125 million

parameters, nearly 27 times the number in our model.

The results in Table V show that our model achieves

the best performance on the code classification task over

all baseline models across different program languages. The

overall average accuracy on four datasets in Project CodeNet

is at least 1.65% higher than other baseline models, and the

accuracy on POJ-104 dataset is increased by at least 0.27%

compared with the SOTA models. We observe that the graph-

based or tree-based models are more effective than the vanilla

Transformer. It proves that using only the token sequence, the

sequence model cannot learn code representation well. Our

proposed HiT addresses this issue for sequential models. With

the enhancement of hierarchy information, HiT outperforms

those graph/tree-based models. We also notice that directly

feeding the traversal sequences of ASTs in the Transformer

performs poorly. The flattened AST node sequence impairs

the sequential information of the context in the source code.

In comparison, our approach is much more efficient and

effective in combining naturalness and hierarchy for code

representation. Even compared to large-scale models such

as CodeBERT, our model is still competitive. HiT achieves

comparable performance and even outperforms on C++1000

and C++1400 datasets by 8.92%, 10.22%. The overall average

accuracy for Project CodeNet of HiT is 4.01% higher than

CodeBERT. We must be aware that CodeBERT requires a large

model size and pre-training on over 8 million data samples

(while our model can be trained on a single GPU and does not

require pre-training). We also notice sequence models often

struggle on C++1000 and C++1400 datasets, including pre-

trained models. Further investigations are conducted in Section

VII-B.

2) RQ4.2: Clone Detection: To further verify the gen-

eralization ability of the model in distinguishing program

3The results of baselines are from the CodeXGLUE benchmark.

TABLE VI
RESULTS OF MODELS ON METHOD NAME PREDICTION TASK

Model
CSN-Ruby CSN-Python

P R F1 P R F1
Code2seq 23.23 10.31 14.28 35.79 24.85 29.34
GGNN 19.15 14.11 16.24 24.07 19.09 21.29
SBT 19.84 12.22 15.12 30.92 18.32 23.01
X-SBT 22.82 13.04 16.60 34.58 20.69 25.89

Transformer 24.26 19.66 21.71 32.71 27.63 29.96
GREAT 24.66 22.25 23.39 35.09 31.62 33.26

CodeTrans 31.46 24.50 27.55 36.41 33.68 34.99
GTNM 24.59 20.11 22.13 32.98 27.73 30.13

HiT 30.70 27.58 29.06 37.25 33.75 35.41

semantics, we choose to evaluate our model on a clone

detection dataset (POJ-Clone) for further evaluation. As we

mentioned, the clone detection dataset is partitioned into

training, validation, and test sets with different OJ problems.

We compare our model with several state-of-the-art methods

specially designed for code clone detection related tasks.

(1) Code2vec/Code2seq [6, 9] uses the attention-based method

with leaf-to-leaf paths of AST to learn embeddings of codes.

(2) NCC [10] encodes programs by leveraging both the

underlying data flow and control flow of the programs with

LSTM to build a code similarity system.

(3) Aroma [30] is a code recommendation engine with the

simplified parse tree (SPT).

(4) TBCCD [46] is a clone detection model with tree-based

convolution networks. It achieves state-of-the-art performance

on a simplified version dataset of clone detection. 4

(5) MISIM [44] is a code clone detection system that

incorporates the context-aware semantics structure (CASS) in

its design. This structure has been carefully tailored to support

the analysis of specific programming languages.

We list the results in Figure 8. In most cases, our HiT

outperforms among baseline models, which improves by at

least 25.34 in MAP@R except MISIM models. The MISIM

models need to be evaluated on every possible combination of

manually designed configurations [44], thus, the preprocessing

process is complex. Our method is simple and easy to use,

with comparable results with the best MISIM-GNN among

those models. When conducted on sequence models, our

performance is even better than MISIM-RNN.

We observe that in our challenging experimental setting,

TBCCD performs poorly. We also notice that NCC, Aroma

and MISIM both require complex preprocessing designed for

particular languages. Our model is based on CSTs and is more

generalizable and practical. Even compared with the extremely

large pretrained models, our model achieves the comparable

performance on the clone detection task.

165

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

E. RQ5: On Generation Task

To answer this RQ, in addition to the baselines mentioned,

we also compare with the SOTA models on the method name

prediction task, including CodeTransformer [49] and GTNM

[27]. (1) CodeTransformer learns structure and context jointly,

and achieves state-of-the-art performance on CSN datasets.

(2) GTNM is a latest transformer-based model for method

name prediction which extracts local contexts and project-

level contexts and incorporates them into the sequence model.

The original paper of GTNM uses contexts designed for Java

that are not available for CSN-Ruby and CSN-Python. We

use a variant of GTNM that only considers the local context

for fairly comparison. In this experimental setup, we did not

cover the tree models included in Table V, as we found that

they did not perform well on this task. We use the same copy

mechanism of HiT for all baseline models.

We list the results of our HiT with the baselines upon

CSN-Ruby and CSN-Python in Table VI. The experimental

results show that our HiT outperforms the baseline models

significantly upon CSN-Ruby and CSN-Python. Specifically,

our model outperforms CodeTransformer by 1.5071, 0.4216

in F1-score, respectively. And our model also significantly

outperforms GTNM by 6.93, 5.28.

VII. DISCUSSIONS

A. Comparison with existing sequence/structure-based models

Due to the design of the model structure, the existing se-

quence model (e.g., the vanilla Transformer [37]) or structural-

based model (e.g., ASTNN [47], TBCNN [31], GGNN [25]) is

usually better at capturing the information of a certain modal.

Some studies jointly learn both sequential and structural infor-

mation for code representation in sequence-based models such

as GREAT [17]. They focus on modeling structure as a relation

between tokens with attention mechanism and overlook the

full impact of hierarchical structure, especially for the global

hierarchy. In this paper, we comprehensively investigate the

impact of different types of hierarchy information on code

representation tasks. In Section VI-B, we design a Variable

Scope Detection task to check the ability of different models to

capture the global hierarchy information. We choose one of the

sequence models, structural-based models and jointly learning

models as the baseline. Experiments show that our model can

better identify the information brought in the hierarchy. Our

model retains the advantage of the sequence models to capture

long-term semantic dependency, and shows the importance of

implanting the full hierarchy information.

B. Analysis of C++ datasets in Project CodeNet

We further investgate the reason why the sequence model

does not 9perform well on the C++ dataset. Analysis of the

code sequences in these C++ datasets revealed that they are

longer (as shown in Table I). Upon further investigation, we

4In the authors’ paper, they evaluate their model on a clone detection dataset
that is not partitioned based on OJ problems. The program semantics in the
training and test sets are the same. However, we think this setting weakens
the generalization ability of the model.

treat the programs from the same class as a single text snippet

by concatenating them and calculate the TF-IDF cosine simi-

larity between every two classes [41]. The average similarity

for C++1000 and C++1400 is 0.787 and 0.754, while the

average score for Java250 and Python800 is only 0.722 and

0.420. This suggests that code sequences in C++ datasets are

highly similar even in different classes, making it difficult for

sequence models to accurately classify them. HiT shows strong

training stability, especially on such difficult datasets.

C. Time Efficiency of HiT

In our experiments, when training HiT on the Python800

dataset, the additional pre-processing step only required < 5
minutes to process 144000 samples, and HiT achieved the

best performance after 122 minutes. In comparison, the vanilla

transformer required 169 minutes. During inference, both

models required approximately 30 seconds. This demonstrates

the efficiency of HiT, especially at training time.

D. Threats to Validity

Threats to internal validity relate to the roles of the model

architecture and hyper-parameters setting. In our experiments,

we do a small-range grid search on learning rate and batch

size settings. Another threat comes from the implementation

of GTNM. We do not use additional project and document-

level context for method name prediction as the original paper

[27] because they are not available in CSN-Ruby/Python.

Threats to external validity mainly relate to tasks and

datasets we choose. We counter this by evaluating our model

on 8 different datasets of three tasks, including classification

and generation tasks across 4 programming languages.

Threats to construct validity include the evaluation metrics

we used in this work. These metrics are adequate for cor-

responding tasks and have been adopted by many previous

studies [6, 9, 29, 32, 35, 49].

VIII. CONCLUSION

In this paper, we analyze how the complete hierarchical

structure influences tokens in code sequence representation

and put forward the property of hierarchical embedding, in-

cluding statement-level global hierarchy and token-level local

hierarchy. We propose HiT, a practical approach to incorporate

hierarchical embedding into Transformer. We investigate the

effectiveness of the global and local hierarchy with a detailed

empirical study. The results show both hierarchies are essential

for code representation models while existing joint learning

models ignore the former. Our in-depth evaluations demon-

strate that HiT can generate accurate and delicate represen-

tations and outperforms the SOTA baselines for classification

and generation tasks on 8 challenging datasets.

IX. ACKNOWLEDGEMENT

This research is supported by the National Natural Science

Foundation of China under Grant No. 62072007, 62192733,

61832009, 62192730. We also would like to thank all the

anonymous reviewers for constructive comments and sugges-

tions to this paper.

166

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,

and Kai-Wei Chang. 2020. A Transformer-based Ap-

proach for Source Code Summarization. In Proceedings
of the Annual Meeting of the Association for Computa-
tional Linguistics.

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar T. De-

vanbu, and Charles Sutton. 2018. A Survey of Machine

Learning for Big Code and Naturalness. ACM Comput.
Surv. 51, 4 (2018).

[3] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and

Zheng Gao. 2020. Typilus: neural type hints. In Proceed-
ings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation.

[4] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud

Khademi. 2018. Learning to Represent Programs with

Graphs. In International Conference on Learning Repre-
sentations.

[5] Miltiadis Allamanis, Hao Peng, and Charles Sutton.

2016. A convolutional attention network for extreme

summarization of source code. In International confer-
ence on machine learning.

[6] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.

2019. code2seq: Generating Sequences from Structured

Representations of Code. In International Conference on
Learning Representations.

[7] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav.

2020. Structural Language Models of Code. In Pro-
ceedings of the International Conference on Machine
Learning.

[8] Uri Alon and Eran Yahav. 2021. On the Bottleneck of

Graph Neural Networks and its Practical Implications.

In the International Conference on Learning Represen-
tations.

[9] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-

hav. 2019. code2vec: learning distributed representations

of code. Proc. ACM Program. Lang. 3, POPL (2019).

[10] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten

Hoefler. 2018. Neural Code Comprehension: A Learn-

able Representation of Code Semantics. In Advances in
Neural Information Processing Systems.

[11] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021.

TreeCaps: Tree-Based Capsule Networks for Source

Code Processing. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021.

[12] Luca Buratti, Saurabh Pujar, Mihaela A. Bornea, J. Scott

McCarley, Yunhui Zheng, Gaetano Rossiello, Alessandro

Morari, Jim Laredo, Veronika Thost, Yufan Zhuang,

and Giacomo Domeniconi. 2020. Exploring Software

Naturalness through Neural Language Models. CoRR
abs/2006.12641 (2020). arXiv:2006.12641

[13] Ruichu Cai, Zhihao Liang, Boyan Xu, Zijian Li, Yuexing

Hao, and Yao Chen. 2020. TAG : Type Auxiliary Guiding

for Code Comment Generation. In Proceedings of the
58th Annual Meeting of the Association for Computa-

tional Linguistics.

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-

aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting

Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A

Pre-Trained Model for Programming and Natural Lan-

guages. In Findings of the Association for Computational
Linguistics: EMNLP 2020.

[15] Patrick Fernandes, Miltiadis Allamanis, and Marc

Brockschmidt. 2019. Structured Neural Summarization.

In International Conference on Learning Representa-
tions.

[16] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu

Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-

atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng,

Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian

Yin, Daxin Jiang, and Ming Zhou. 2021. Graph-

CodeBERT: Pre-training Code Representations with Data

Flow. In 9th International Conference on Learning Rep-
resentations, ICLR 2021.

[17] Vincent J Hellendoorn, Charles Sutton, Rishabh Singh,

Petros Maniatis, and David Bieber. 2020. Global rela-

tional models of source code. In International Confer-
ence on Learning Representations.

[18] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel,

and Premkumar T. Devanbu. 2012. On the naturalness of

software. In 34th International Conference on Software
Engineering, ICSE 2012.

[19] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.

Deep code comment generation. In 2018 IEEE/ACM 26th
International Conference on Program Comprehension
(ICPC). IEEE.

[20] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis

Allamanis, and Marc Brockschmidt. 2019. CodeSearch-

Net challenge: Evaluating the state of semantic code

search. arXiv preprint arXiv:1909.09436 (2019).

[21] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and

Luke Zettlemoyer. 2016. Summarizing Source Code us-

ing a Neural Attention Model. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, ACL 2016.

[22] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish

Chandra. 2021. Code Prediction by Feeding Trees to

Transformers. In 43rd IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2021.

[23] Alexander LeClair, Siyuan Jiang, and Collin McMillan.

2019. A neural model for generating natural language

summaries of program subroutines. In Proceedings of the
41st International Conference on Software Engineering,
ICSE 2019.

[24] Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing

Hu. 2023. SkCoder: A Sketch-based Approach for Auto-

matic Code Generation. arXiv preprint arXiv:2302.06144
(2023).

[25] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and

Richard S. Zemel. 2016. Gated Graph Sequence Neu-

ral Networks. In International Conference on Learning

167

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

Representations.

[26] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh

Jannu, Grant Jenks, Deep Majumder, Jared Green,

Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundaresan.

2022. Automating Code Review Activities by Large-

Scale Pre-Training (ESEC/FSE 2022).
[27] Fang Liu, Ge Li, Zhiyi Fu, Shuai Lu, Yiyang Hao, and

Zhi Jin. 2022. Learning to Recommend Method Names

with Global Context. CoRR abs/2201.10705 (2022).

[28] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Tae-

young Kim, Kisub Kim, Anil Koyuncu, Suntae Kim, and

Yves Le Traon. 2019. Learning to spot and refactor

inconsistent method names. In ICSE 2019.

[29] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey

Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,

Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-

dong Zhou, Linjun Shou, Long Zhou, Michele Tufano,

Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan,

Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.

CodeXGLUE: A Machine Learning Benchmark Dataset

for Code Understanding and Generation. In NeurIPS
Datasets and Benchmarks 2021.

[30] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and

Satish Chandra. 2019. Aroma: code recommendation via

structural code search. OOPSLA (2019).

[31] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.

Convolutional Neural Networks over Tree Structures for

Programming Language Processing. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence.

[32] Kevin Musgrave, Serge J. Belongie, and Ser-Nam Lim.

[n. d.]. A Metric Learning Reality Check. In Computer
Vision - ECCV 2020 - 16th European Conference.

[33] Son Nguyen, Hung Phan, Trinh Le, and Tien N. Nguyen.

2020. Suggesting natural method names to check name

consistencies. In ICSE ’20: 42nd International Confer-
ence on Software Engineering.

[34] Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, Liguo

Huang, and Bin Luo. 2022. SPT-Code: Sequence-to-

Sequence Pre-Training for Learning Source Code Rep-

resentations. CoRR abs/2201.01549 (2022).

[35] Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,

Giacomo Domeniconi, Vladimir Zolotov, Julian Dolby,

Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika

Thost, Luca Buratti, Saurabh Pujar, Shyam Ramji, Ulrich

Finkler, Susan Malaika, and Frederick Reiss. 2021. Co-

deNet: A Large-Scale AI for Code Dataset for Learning

a Diversity of Coding Tasks. In Neural Information
Processing Systems Datasets and Benchmarks Track.

[36] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter

Bloem, Rianne van den Berg, Ivan Titov, and Max

Welling. [n. d.]. Modeling Relational Data with Graph

Convolutional Networks. In ESWC 2018.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,

and Illia Polosukhin. 2017. Attention is all you need. In

Advances in neural information processing systems.

[38] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.

2015. Pointer networks. In Advances in neural infor-
mation processing systems.

[39] Shangwen Wang, Ming Wen, Bo Lin, and Xiaoguang

Mao. [n. d.]. Lightweight global and local contexts

guided method name recommendation with prior knowl-

edge. In ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering.

[40] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin.

2020. Detecting Code Clones with Graph Neural Net-

work and Flow-Augmented Abstract Syntax Tree. In

2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE.

[41] Wenhan Wang, Kechi Zhang, Ge Li, Shangqing Liu,

Anran Li, Zhi Jin, and Yang Liu. 2022. Learning Program

Representations with a Tree-Structured Transformer.

[42] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang.

2020. Learning semantic program embeddings with

graph interval neural network. Proc. ACM Program.
Lang. 4, OOPSLA (2020).

[43] Mengfei Yang, Bin Gu, Zhenhua Duan, Zhi Jin, Naijun

Zhan, and Yunwei Dong. 2022. Intelligent program

synthesis framework and key scientific problems for em-

bedded software. Chinese Space Science and Technology
42, 4 (2022), 1.

[44] Fangke Ye, Shengtian Zhou, Anand Venkat, Ryan Mar-

cus, Nesime Tatbul, Jesmin Jahan Tithi, Paul Petersen,

Timothy G. Mattson, Tim Kraska, Pradeep Dubey, Vivek

Sarkar, and Justin Gottschlich. 2020. MISIM: An

End-to-End Neural Code Similarity System. CoRR
abs/2006.05265 (2020). arXiv:2006.05265

[45] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis,

Marc Brockschmidt, and Alexander L Gaunt. 2019.

Learning to Represent Edits. In International Conference
on Learning Representations.

[46] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and

Qianxiang Wang. [n. d.]. Neural detection of semantic

code clones via tree-based convolution. In Proceedings
of the 27th International Conference on Program Com-
prehension, ICPC 2019.

[47] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,

Kaixuan Wang, and Xudong Liu. 2019. A novel neural

source code representation based on abstract syntax tree.

In Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019.

[48] Kechi Zhang, Wenhan Wang, Huangzhao Zhang, Ge Li,

and Zhi Jin. 2022. Learning to Represent Programs

with Heterogeneous Graphs. In Proceedings of the 30th
IEEE/ACM International Conference on Program Com-
prehension (ICPC ’22). 12 pages.

[49] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure

Leskovec, and Stephan Günnemann. [n. d.]. Language-

Agnostic Representation Learning of Source Code from

Structure and Context. In 9th International Conference
on Learning Representations, ICLR 2021.

168

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:36:29 UTC from IEEE Xplore. Restrictions apply.

